TY - JOUR
T1 - Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors
AU - Wang, Yan
AU - Kim, Jong Chan
AU - Wu, Ryan J.
AU - Martinez, Jenny
AU - Song, Xiuju
AU - Yang, Jieun
AU - Zhao, Fang
AU - Mkhoyan, Andre
AU - Jeong, Hu Young
AU - Chhowalla, Manish
N1 - Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2019/4/4
Y1 - 2019/4/4
N2 - As the dimensions of the semiconducting channels in field-effect transistors decrease, the contact resistance of the metal–semiconductor interface at the source and drain electrodes increases, dominating the performance of devices1–3. Two-dimensional (2D) transition-metal dichalcogenides such as molybdenum disulfide (MoS2) have been demonstrated to be excellent semiconductors for ultrathin field-effect transistors4,5. However, unusually high contact resistance has been observed across the interface between the metal and the 2D transition-metal dichalcogenide3,5–9. Recent studies have shown that van der Waals contacts formed by transferred graphene10,11 and metals12 on few-layered transition-metal dichalcogenides produce good contact properties. However, van der Waals contacts between a three-dimensional metal and a monolayer 2D transition-metal dichalcogenide have yet to be demonstrated. Here we report the realization of ultraclean van der Waals contacts between 10-nanometre-thick indium metal capped with 100-nanometre-thick gold electrodes and monolayer MoS2. Using scanning transmission electron microscopy imaging, we show that the indium and gold layers form a solid solution after annealing at 200 degrees Celsius and that the interface between the gold-capped indium and the MoS2 is atomically sharp with no detectable chemical interaction between the metal and the 2D transition-metal dichalcogenide, suggesting van-der-Waals-type bonding between the gold-capped indium and monolayer MoS2. The contact resistance of the indium/gold electrodes is 3,000 ± 300 ohm micrometres for monolayer MoS2 and 800 ± 200 ohm micrometres for few-layered MoS2. These values are among the lowest observed for three-dimensional metal electrodes evaporated onto MoS2, enabling high-performance field-effect transistors with a mobility of 167 ± 20 square centimetres per volt per second. We also demonstrate a low contact resistance of 220 ± 50 ohm micrometres on ultrathin niobium disulfide (NbS2) and near-ideal band offsets, indicative of defect-free interfaces, in tungsten disulfide (WS2) and tungsten diselenide (WSe2) contacted with indium alloy. Our work provides a simple method of making ultraclean van der Waals contacts using standard laboratory technology on monolayer 2D semiconductors.
AB - As the dimensions of the semiconducting channels in field-effect transistors decrease, the contact resistance of the metal–semiconductor interface at the source and drain electrodes increases, dominating the performance of devices1–3. Two-dimensional (2D) transition-metal dichalcogenides such as molybdenum disulfide (MoS2) have been demonstrated to be excellent semiconductors for ultrathin field-effect transistors4,5. However, unusually high contact resistance has been observed across the interface between the metal and the 2D transition-metal dichalcogenide3,5–9. Recent studies have shown that van der Waals contacts formed by transferred graphene10,11 and metals12 on few-layered transition-metal dichalcogenides produce good contact properties. However, van der Waals contacts between a three-dimensional metal and a monolayer 2D transition-metal dichalcogenide have yet to be demonstrated. Here we report the realization of ultraclean van der Waals contacts between 10-nanometre-thick indium metal capped with 100-nanometre-thick gold electrodes and monolayer MoS2. Using scanning transmission electron microscopy imaging, we show that the indium and gold layers form a solid solution after annealing at 200 degrees Celsius and that the interface between the gold-capped indium and the MoS2 is atomically sharp with no detectable chemical interaction between the metal and the 2D transition-metal dichalcogenide, suggesting van-der-Waals-type bonding between the gold-capped indium and monolayer MoS2. The contact resistance of the indium/gold electrodes is 3,000 ± 300 ohm micrometres for monolayer MoS2 and 800 ± 200 ohm micrometres for few-layered MoS2. These values are among the lowest observed for three-dimensional metal electrodes evaporated onto MoS2, enabling high-performance field-effect transistors with a mobility of 167 ± 20 square centimetres per volt per second. We also demonstrate a low contact resistance of 220 ± 50 ohm micrometres on ultrathin niobium disulfide (NbS2) and near-ideal band offsets, indicative of defect-free interfaces, in tungsten disulfide (WS2) and tungsten diselenide (WSe2) contacted with indium alloy. Our work provides a simple method of making ultraclean van der Waals contacts using standard laboratory technology on monolayer 2D semiconductors.
UR - http://www.scopus.com/inward/record.url?scp=85063639201&partnerID=8YFLogxK
U2 - 10.1038/s41586-019-1052-3
DO - 10.1038/s41586-019-1052-3
M3 - Article
C2 - 30918403
AN - SCOPUS:85063639201
SN - 0028-0836
VL - 568
SP - 70
EP - 74
JO - Nature
JF - Nature
IS - 7750
ER -