Walking-in-Place Characteristics-Based Geriatric Assessment Using Deep Convolutional Neural Networks

Dawoon Jung, Mau Dung Nguyen, Mina Park, Miji Kim, Chang Won Won, Jinwook Kim, Kyung Ryoul Mun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

The world population is aging, and this phenomenon is expected to continue for the next decades. This study aimed to propose a simple and reliable method that can be used for daily in-home monitoring of frailty and cognitive dysfunction in the elderly based on their walking-in-place characteristics. Fifty-four community-dwelling elderly people aged 65 years or older participated in this study. The participants were categorized into the robust and the non-robust groups according to the FRAIL scale. The mini-mental state examination was used to classify the cognitive impairment and the non-cognitive impairment groups. The 3-axis acceleration and the 3-axis angular velocity signals were measured using the inertial measurement units attached to the foot, shank, thigh, and posterior pelvis while each participant was walking in place for 20 seconds. The walking-in-place spectrograms were acquired by applying time-frequency analysis to the lower body movement signals measured in one stride. Four-fold cross-validation was applied to 80% of the total samples and the remaining 20% were used as test data. The deep convolutional neural network-based classifiers trained with the walking-inplace spectrograms enabled to categorize the robust and the non-robust groups with 94.63% accuracy and classify the cognitive impairment and the non-cognitive impairment groups with 97.59% accuracy. This study suggests that the walking-in-place spectrograms, which can be obtained without spacious experimental space, cumbersome equipment, and laborious processes, are effective indicators of frailty and cognitive dysfunction in the elderly.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3931-3935
Number of pages5
ISBN (Electronic)9781728119908
DOIs
Publication statusPublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 20 Jul 202024 Jul 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/07/2024/07/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Fingerprint

Dive into the research topics of 'Walking-in-Place Characteristics-Based Geriatric Assessment Using Deep Convolutional Neural Networks'. Together they form a unique fingerprint.

Cite this