TY - JOUR
T1 - Wavelength-dependent label-free identification of isolated nontuberculous mycobacteria using surface-enhanced Raman spectroscopy
AU - Kim, Soogeun
AU - Kim, Young Jin
AU - Bang, Ayoung
AU - Kim, Wansun
AU - Choi, Samjin
AU - Lee, Hee Joo
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/3/5
Y1 - 2021/3/5
N2 - We investigated the effect of Raman excitation wavelengths on the surface-enhanced Raman spectroscopy (SERS)-based identification of isolated nontuberculous mycobacteria (NTM). The SERS spectra with 3 commonly used excitation wavelengths, 532, 638, and 785 nm, were compared across 6 representative NTM species that primarily cause human NTM infections in Korea and the United States; these species were identified. The statistical differences among NTM SERS spectra at each Raman excitation wavelength were verified using 1-way analysis of variance, and the 6 NTM species were identified using principal components-linear discriminant analysis with leave-one-out cross validation. The identification accuracies with aromatic amino acid biomarkers were 99.3%, 91.3%, and 90.7% for 532, 638, and 785 nm, respectively. We believe that the proposed SERS protocol with aromatic amino acid biomarkers at the 532-nm Raman excitation wavelength will enable fast and accurate identification of NTM compared to previous identification methods.
AB - We investigated the effect of Raman excitation wavelengths on the surface-enhanced Raman spectroscopy (SERS)-based identification of isolated nontuberculous mycobacteria (NTM). The SERS spectra with 3 commonly used excitation wavelengths, 532, 638, and 785 nm, were compared across 6 representative NTM species that primarily cause human NTM infections in Korea and the United States; these species were identified. The statistical differences among NTM SERS spectra at each Raman excitation wavelength were verified using 1-way analysis of variance, and the 6 NTM species were identified using principal components-linear discriminant analysis with leave-one-out cross validation. The identification accuracies with aromatic amino acid biomarkers were 99.3%, 91.3%, and 90.7% for 532, 638, and 785 nm, respectively. We believe that the proposed SERS protocol with aromatic amino acid biomarkers at the 532-nm Raman excitation wavelength will enable fast and accurate identification of NTM compared to previous identification methods.
KW - Identification
KW - NTM
KW - Nontuberculous mycobacteria
KW - Raman excitation wavelength
KW - Surface-enhanced Raman spectroscopy, SERS
UR - http://www.scopus.com/inward/record.url?scp=85096925753&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2020.119186
DO - 10.1016/j.saa.2020.119186
M3 - Article
C2 - 33248886
AN - SCOPUS:85096925753
SN - 1386-1425
VL - 248
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
M1 - 119186
ER -